Indian Statistical Institute, Bangalore

B. Math. (hons.) First Year, First Semester

Linear Algebra I

Mid Term Examination Maximum marks: 30 Date : 12 October 2022 Time: 120 minutes

Answer any Five, each question carries 6 marks.

- 1. Prove that the number of elements in any linearly independent set is less than the number of elements in a (finite) basis of a vector space.
- 2. If W_1, W_2 are subspaces of a vector space, prove that $\dim(W_1+W_2) = \dim(W_1) + \dim(W_2) \dim(W_1 \cap W_2)$.
- 3. Prove that $A^2 = A$ if and only if $\mathbb{K}^m = C(A) + C(I A)$ and C(I A) = N(A).
- 4. (i) Let A be a m × n-matrix with rank m and B be a r × m-matrix with rank r. Find the rank of BA (Marks 4).
 (ii) Let T: ℝⁿ → ℝⁿ be a bijective linear transformation and v₁, v₂, ..., v_k are linearly independent vectors in ℝⁿ. Prove that T(v₁), T(v₂), ..., T(v_k) are also linearly independent vectors in ℝⁿ.
- 5. Prove that $C(A^m) = C(A^{m+1})$ implies $C(A^n) = C(A^m)$ for all n > m and there is a smallest integer m such that $C(A^m) = C(A^{m+1})$.
- 6. Let $T: \mathbb{R}^4 \to \mathbb{R}^4$ be a linear transformation given by $T(x_1, x_2, x_3, x_4) = (x_2, 2x_3, 0, 0)$ and A be the matrix of T with respect to the standard basis. Find g-inverses of A for all possible ranks.
- 7. Prove that there is a g-inverse of A with rank same as that of A.